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Abstract

Following our previous paper on a novel finite volume formulation for computing flows of anyMach number, we pres-
ent the multi-dimensional extension of the method in this paper. Treating two kinds of averages, which are generically
called �moments� anddefined as the volume integrated average (VIA) and the surface integrated average (SIA) in this paper,
as the prognostic variablesmakes the presentmethoddifferent from the conventional finite volumemethodwhere onlyVIA
is the basic variable. The resulting discretization approach, which is a type of the CIP/multi-moment finite volumemethod
and calledVSIAM3 (volume/surface integrated average-basedmulti-momentmethod), is combinedwith a pressure-based
projection formulation for the time integration to enable the simulations for both compressible and incompressible flows.

The numerical algorithm for multi-dimensions will be reported in this paper. Numerical experiments with flows of a
wide range Mach numbers will be also presented.
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1. Introduction

Unified numerical formulation for all Mach numbers or for compressible and incompressible flows
is very important in practical applications, especially where complex flows of a wide range Mach num-
bers are mixed. However, most of the existing fluid solvers are developed solely for either compressible
or incompressible flows. There are some substantial barriers when one applies a scheme of one regime
to a problem of another regime. For example, when using a density-based explicit method (see [18] for
an extensive review of this type methods) to low Mach or incompressible flows, one has to deal with
the singularity in the limit of small Mach number, which makes the pressure extremely sensitive to
even a tiny change in density, and the severe restriction on the CFL condition of stability. On the
other hand, when applying any of the pressure-based methods [3,6–9,12] to compressible or high Mach
flows, one may have troubles in conservation and the poor resolutions of shock waves. Studies intend-
ing to bridge the gap of the two categories and to find numerical schemes that work well for all Mach
flows have been so far carried out by either preconditioning the density-based explicit methods
[5,13,19,20,22] or improving the numerical accuracy of pressure-based semi-implicit methods
[1,10,11,15,16,30]. The resulting schemes are usually called unified methods. See [23] for a more com-
plete review.

In the previous paper [24], a one-dimensional finite volume method for arbitrary Mach number
flows is presented by employing a pressure-based projection method and a novel spatial discretiza-
tion formulation that uses both the cell-integrated average and the interface value as the model vari-
ables. In three-dimensional case, the cell-integrated average and the interface value are
correspondingly defined as the volume integrated average (VIA) and the surface integrated average
(SIA). All these quantities are generically called �moments� in our context. The basic idea of the spa-
tial discretization comes from the underlying concept of the CIP (cubic interpolated propagation or
constrained interpolation profile) method [28,31], i.e., making use more than one moments as the
model variables in computational models. The resulting discretization formulation, namely VSIAM3
(volume/surface integrated average-based multi-moment method), is different from the traditional fi-
nite volume method where only the volume averaged values are treated as the model variables.
Incorporating the VSIAM3 with a projection scheme leads to a convenient algorithm to compute
the compressible flows via a pressure-based numerical framework which was originally designed
and has been so far widely used in the computations of incompressible flows. Shown in [24], the
VSIAM3 gives satisfactory numerical results to various benchmark tests of the Euler conservation
law, and appears to be promising in regard to numerical accuracy, robustness and algorithmic
simplicity.

When extending the VSIAM3 to multi-dimensions, extra attention needs to be paid for updating the
moments for all physical variables because multi-moments (two as VIA and SIA) are used as the
dependent variables. In this paper, we present a simple multi-dimensional version for the VSIAM3.
The multi-dimensional advection is computed by the CIP-CSL3 scheme [26], while the pressure projec-
tion and the viscous terms are computed by a fully multi-dimensional formulation based on VIA and
SIAs of the physical variables.

In Section 2, the numerical formulations are described. The solution procedure using a
pressure-based projection is similar to the 1D case reported in [24]. The multi-dimensional dis-
cretization of VSIAM3 will be presented in detail. Numerical tests are given in Section 3.
With the 1D method extensively tested with various compressible flows in [24], some 2D
numerical experiments of compressible and nearly incompressible flows will be presented to
show the capability of the presented method as a unified solver in simulating different flows
from highly compressible to nearly incompressible. The paper ends with some short remarks in
Section 4.
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2. Numerical formulations

2.1. Governing equations and fractional step procedure

We consider the following general conservation laws for per volume fluid in 2D:
oq
ot

þr �m ¼ 0; ð1Þ

om

ot
þr � ðm� uÞ ¼ �rp þr �T; ð2Þ

oE
ot

þr � ðuEÞ ¼ �r � ðpuÞ þ r � ðT� uÞ; ð3Þ
where q is the density, u = (ux,uy) = (u,v) the velocity vector, m = (mx,my) = (qu,qv) the momentum vec-
tor, p the pressure, E the total energy. Suppose we have perfect gas, the pressure can be obtained by the
equation of state as p = (E � qu2/2)(c � 1) with c being the ratio of the specific heats. Under the assumption
of Newtonian fluid, the components of the viscous shear stress tensor T are evaluated as
sab ¼ l
oua
ob

þ oub
oa

� �
� 2

3
ðr � uÞd̂ab

� �
with a; b ¼ x; y; ð4Þ
where l is the dynamic viscosity of the fluid, and d̂ab is the Kronecker delta.
As discussed in [23], when the flow is of small Mach number or incompressible, singularity arises from

the process of obtaining the pressure with the equation of state after q and E are computed as the dependent
variables. As a remedy to this, the equation of the total energy can be replaced by a prognostic equation of
pressure which then can be solved simultaneously with the continuity equation and the momentum equa-
tion in an implicit way for the low Mach flow. Among others, the examples of this type treatment are found
in [1,21,30]. In [24], we retain the conservative equation for the total energy, but update the pressure
through a semi-implicit step in the non-advection phase, which works as the pressure-based projection
when the flow becomes incompressible. Similar to the 1D version in [24], we briefly describe the solution
procedure supposing that we know all values at nth step as qn, mn and En.

Adopting a fractional step approach, we first compute the advection part (i.e., the left-hand side of Eqs.
(1)–(3)) with the CIP-CSL3 scheme [26], whose multi-dimensional implementation is going to be described
later, and obtain the value for density at the new time step qn + 1 and the provisional values of the momen-
tum and the total energy as m} and E}. Similar to the 1D case, the semi-discretized equations of the non-
advection part are then written as
mnþ1 �m}

Dt
¼ �rpnþ1 ð5Þ
and
Enþ1 � E}

Dt
¼ �r � ðupÞnþ1

; ð6Þ
where Dt is the time integration interval. Note that we have omitted the sub-steps for viscous and source
terms for forcing and heating, which can be included by just adding extra sub-steps for the corresponding
physics after the advection computation. The updated values are then superscripted with } and used in the
following projection procedure.
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From (5), we have
1

Dt
r �mnþ1 �r �m}� �

¼ �r2pnþ1: ð7Þ
The first term on the left-hand side of Eq. (7) provides an interface to include the compressibility into a
pressure-based projection method, and is approximated by
r �mnþ1 ¼ u} � rqnþ1 þ qnþ1r � unþ1: ð8Þ
For compressible flow, change in fluid density connects directly to the volume change rate, hence to the
divergence which is then expressed through the spatial variations in velocity. This is presented by the fol-
lowing equation:
dq
dt

¼ �qr � u; ð9Þ
where d/dt and $ Æ u denote the variations in time and volume change rate for a fluid parcel.
Recall the equation of state and the first law of thermodynamics, we have the following relations among

the thermodynamic variables and the velocity field.
dp
dt

¼ ðc� 1Þ e
dq
dt

þ q
de
dt

� �
; ð10Þ
where e is the internal energy, and
de
dt

¼ � p
q
r � u: ð11Þ
Eqs. (9)–(11) are the part that relates to the acoustic wave and compressibility. We then arrive at
r � u ¼ � 1

cp
dp
dt

: ð12Þ
The above relation states the response of the velocity field to the disturbance in the pressure field or vice
versa.

By replacing the divergence term expressed by (12) in (8) and using Euler forward stepping to the pres-
sure tendency, we recast (7) as
r2pnþ1 ¼ 1

Dt
�u} � rqnþ1 þ 1

C2

pnþ1 � p}

Dt
þr �m}

� �
; ð13Þ
where C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cp}=qnþ1

p
is the sound speed, and the intermediate pressure is computed by p} =

(E} � qn + 1(u})2/2)(c � 1).
Rewriting Eq. (13) as
� 1

C2Dt
þr2

� �
pnþ1 ¼ 1

Dt
�u} � rqnþ1 þ�qnþ1

cDt
þr �m}

� �
; ð14Þ
we find that by updating pressure from the Poisson equation (14), we avoid the singularity in the process of
computing pressure from density and internal energy through equation of state. It is also obvious that Eq.
(13) becomes exactly the pressure Poisson equation in the projection method for incompressible flows when
the sound speed C becomes infinite or the Mach number (M = u/C) approaches zero.

Poisson pressure equation (14) can be solved by any standard iterative method. After pn + 1 is solved
from (14), the momentum and the total energy are then updated by (5) and (6). It is noted that all the mass,
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momentum and total energy are predicted in a conservative form, which is different from those reported in
[1,30] where all or part of the variables are computed by non-conservative formulations. Using multi-inte-
grated moments, our spatial discretizations for the above equations are different from the conventional fi-
nite difference method or finite volume method, and will be discussed next.

2.2. Spatial discretization in multi-dimensions

The multi-dimensional discretization of VSIAM3 is a straightforward extension of its 1D version in [24].
An implementation of VSIAM3 to incompressible flow can be found in [25]. We include the two-dimen-
sional formulation below for the completeness of the present paper.

In VSIAM3, the model variables are the VIA and SIAs for each time-evolution physical variable. We
denote VIA and SIA of physical variable /(x,y, t) by V/, Sx/ and Sy/ in 2D Cartesian grid (x,y).

In a Cartesian coordinate, the control volume is defined by a volume element (VE)
V ij ¼ ½xi � 1

2
; xi þ 1

2
� � ½yj � 1

2
; yj þ 1

2
� and four surface elements (SE) Sx

i�1
2
j
¼ x

i�1
2
\ ½y

j�1
2
; y

jþ1
2
�, Sy

ij�1
2

¼
y
j�1

2
\ ½x

i�1
2
; x

iþ1
2
�, as shown in Fig. 1.

The volume of the VE is consequently |Vij| = DxiDyj, and the lengths of the SEs are jSx

i�1
2
j
j ¼ Dyj and

jSy

ij�1
2

j ¼ Dxi, where Dxi ¼ x
iþ1

2
� x

i�1
2
and Dyj ¼ y

jþ1
2
� y

j�1
2
.

The VIA and the SIAs of physical variable /(x,y, t) are, respectively, defined on Vij, S
x

iþ1
2
j
and Sy

ijþ1
2

for all
mesh cells by
Fig. 1.
Sy

ij�1
2

).
V/ij ¼
1

jV ijj

Z x
iþ
1
2

x
i�
1
2

Z y
jþ
1
2

y
j�
1
2

/ðx; y; tÞ dx dy; ð15Þ

Sx/
iþ1

2
j
¼ 1

jSx

iþ1
2
j
j

Z y
jþ
1
2

y
j�
1
2

/ðx
iþ1

2
; y; tÞ dy ð16Þ
and
Sy/
ijþ1

2
¼ 1

jSy

ijþ1
2

j

Z x
iþ
1
2

x
i�
1
2

/ðx; y
jþ1

2
; tÞ dx: ð17Þ
A 2D control volume. VIA is defined on the volume elements (Vij), while the SIAs are defined on the surface elements (Sx

i�1
2
j
,
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The discretization of the differential or integral operators can be computed using interpolations based
on VIA and SIAs. Without losing generality, we consider the one-dimensional interpolation in x direc-
tion. A simple linear interpolation, for example, can be constructed by using the VIAs of two neigh-
boring cells as
U1ðxÞ ¼ a1 þ b1ðx� x
iþ1

2
Þ ð18Þ
with
a1 ¼
1

Dxi þ Dxiþ1

ðDxiþ1
V/ij þ DxiV/iþ1jÞ; ð19Þ

b1 ¼
2

Dxi þ Dxiþ1

ðV/iþ1j � V/ijÞ; ð20Þ
while a parabolic polynomial can be constructed by using both the VIA and SIA as
U2ðxÞ ¼ a2 þ b2ðx� x
iþ1

2
Þ þ c2ðx� x

iþ1
2
Þ2; ð21Þ
where
a2 ¼ Sx/
iþ1

2
j
; ð22Þ

b2 ¼
2

Dxi þ Dxiþ1

Dxi
Dxiþ1

ðV/iþ1j � Sx/
iþ1

2
j
Þ � Dxiþ1

Dxi
ðV/ij � Sx/

iþ1
2
j
Þ

� �
; ð23Þ

c2 ¼3
1

DxiðDxi þ Dxiþ1Þ
ðV/ij � Sx/

iþ1
2
j
Þ

�
þ 1

Dxiþ1ðDxi þ Dxiþ1Þ
ðV/iþ1j � Sx/

iþ1
2
j
Þ
�
: ð24Þ
The gradient operator at Sx

iþ1
2
j
then can be computed by
Sxox/ðxÞiþ1
2
j
¼ oU1ðxÞ

ox

� �
iþ1

2
j

¼ b1 ð25Þ
or
Sxox/ðxÞiþ1
2
j
¼ oU2ðxÞ

ox

� �
iþ1

2
j

¼ b2: ð26Þ
It is found that for constant grid spacing both (25) and (26) become the simple central differencing based on
the two neighboring VIA values.

The Laplacian operator on Vij can be approximated by
V oxx/ðxÞij ¼
1

Dxi
½Sxox/ðxÞiþ1

2
j
� Sxox/ðxÞi�1

2
j
�: ð27Þ
The corresponding expressions in y direction can also be derived analogously.
Compared to the conventional FVM, in addition to VIA, the extra SIAs also need to be updated in a

VSIAM3 model. The computation will become much heavier if we predict each SIA exactly according
to the governing equations. Alternatively, a more efficient formulation can be constructed by solving parts
of VIAs or SIAs, and then update the rest using the so-called TEC (time-evolution converting) formula

with the time variation of either ðdV /dt Þ or ð
dSa /
dt Þ (for a = x,y) known. A TEC formula is used to link the time

variation between VIA and SIA, thus is in fact equivalent to the interpolation of operators. For example, a



F. Xiao et al. / Journal of Computational Physics 213 (2006) 31–56 37
simple linear interpolation leads to a second-order TEC that converts the time variation from VIA to SIA
as
dtS
x/

iþ1
2
j
¼ 1

2
ðdtV/iþ1j þ dtV/ijÞ ð28Þ
and one that converts the time variation from SIA to VIA as
dtV/ij ¼
1

2
ðdtSx/i�1

2
j
þ dtS

x/
iþ1

2
j
Þ: ð29Þ
A fourth-order explicit TEC foumulae on a uniform spaced mesh reads
dtS
x/iþ1

2j
¼ 1

12
½7ðdtV/iþ1j þ dtV/ijÞ � ðdtV/i�1j þ dtV/iþ2jÞ�; ð30Þ
or
dtV/ij ¼
1

24
½13ðdtSx/i�1

2
j
þ dtS

x/
iþ1

2
j
Þ � ðdtSx/i�3

2
j
þ dtS

x/
iþ3

2
j
Þ�: ð31Þ
Using the TEC formula, we usually need to compute the governing equation of either VIA or SIA for
only once. So, the increase of the computational efforts due to using multi-integrated moments is not
significant.

Before going further for the description of the spatial discretization for the governing equations, we
assume a constant grid spacing in both directions for simplicity and define the following notations.

� The subscript indexes of surface elements
/Ix ¼ /
iþ1

2
j
; /Iy ¼ /

ijþ1
2
:

� The difference operator
dxð/Þij ¼
1

Dxi
ð/

iþ1
2
j
� /

i�1
2
j
Þ; dyð/Þij ¼

1

Dyj
ð/

ijþ1
2
� /

ij�1
2
Þ:
� The averaging operator
ð/Þxij ¼
1

2
ð/

iþ1
2
j
þ /

i�1
2
j
Þ; ð/Þyij ¼

1

2
ð/

ijþ1
2
þ /

ij�1
2
Þ;

ð/Þxiþ1
2
j ¼

1

2
ð/iþ1j þ /ijÞ; ð/Þy

ijþ1
2
¼ 1

2
ð/ijþ1 þ /ijÞ:
The divergence for control volume Vij is computed via the SIAs of the velocity components normal to
each surface element,
Dij ¼ dxðSxuÞij þ dyðSy vÞij: ð32Þ
2.3. Multi-dimensional implementation of CIP-CSL3 scheme

In the present model the advection computation can be solved by one of the CIP-CSL type schemes
[26,27,29].

Concerning the multi-dimensional implementation of a CIP-CSL scheme, an efficient algorithm was
devised based on just two integrated moments, i.e., the VIA and the SIA in [27].
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In terms of VIA and SIA, the multi-dimensional advection scheme can be constructed through a simple
splitting [27] based on a one-dimensional CIP-CSL scheme.

We consider the following 2D advection equation:
o/
ot

þ oðu/Þ
ox

þ oðv/Þ
oy

¼ 0; ð33Þ
where / is the transported quantity. The 2D CIP-CSL scheme in terms of VIA and SIA is devised to
solve the VIA (V/) and the SIAs (S

x/ and Sy/) according to the following semi-discretized
equations:
oV/ij

ot
þ dx½FxðSxu; Sx/; V/Þ�ij þ dy ½FyðSy v; Sy/; V/Þ�ij ¼ 0 ð34Þ
and
dSa/Ia

dt
þ ðV/DÞ

a

Ia
¼ 0 with a ¼ x; y; ð35Þ
where FxðSxu; Sx/; V/Þ and FyðSy v; Sy/; V/Þ represent the advection fluxes in x and y directions, respec-
tively. d/dt is the substantial derivative. The advection velocity components denoted by Sxu and Sy v are
the SIAs of the normal components of velocity in each direction. In the CIP-CSL3 scheme, a cubic
interpolation function is constructed by using both VIA and SIA of the transported quantity. The
VIA value is then computed by a flux-based formulation, while the substantial derivative of the SIA
in Eq. (35) is at first updated by a semi-Lagrangian step and then corrected by an extra step that eval-
uates the divergence term along the foot trajectory. See [26] for more details.

Using splitting, a simple two-dimensional algorithm on a uniform grid reads as follows:
Given VIA and SIAs (V/

n

ij,
Sx/

n

iþ1
2
j and

Sy/
n

ijþ1
2
) at the nth step.

x direction:

x1: compute V/
�
ij,

Sx/
�
iþ1

2
j from

V/
n

ij,
Sx/

n

iþ1
2
j with the 1D scheme.

x2: update Sy/
�
ijþ1

2
by the time evolution converting (TEC) formula in y direction as
Sy/
�
ijþ1

2
¼ Sy/

n

ijþ1
2
þ 1

2
ðV/�

ijþ1 � V/
n

ijþ1 þ V/
�
ij � V/

n

ijÞ:
y direction:
} } � �
y1: compute V/ij ,
Sy/

ijþ1
2
from V/ij,

Sy/ijþ1
2
with the 1D scheme.

y2: similar to step x2, update Sx/
}
iþ1

2
j
by TEC formula in x direction as

Sx/
}
iþ1

2
j
¼ Sx/

�
iþ1

2
j þ

1

2
ðV/}

iþ1j � V/
�
iþ1j þ V/

}
ij � V/

�
ijÞ:

In steps x2 and y2, the TEC formula is an interpolation approximation for time derivative. Given in the
above expressions are just the linear interpolation. As shown before, higher order explicit approximations
or splines can also be used. The correction to the dimensional splitting as discussed in [2] is added to remedy
the splitting errors from a variable velocity field.

It is noted that the flux formulation used to compute the VIA in the CIP-CSL3 scheme assures the con-
servation. As in [24], the CIP-CSL3 scheme provides a device in the interpolation reconstruction to control
both the numerical oscillation and the numerical diffusion.
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2.4. Discretization of the governing equations

As discussed above, with the spatial discretization constructed in terms of VIAs and SIAs, the corre-
sponding semi-discretized expressions for the governing equations (1)–(3) are written as follows:

Continuity equation
oV qij

ot
þ dx½FxðSxu; Sxq; V qÞ�ij þ dy ½FyðSy v; Syq; V qÞ�ij ¼ 0; ð36Þ

dSaqIa

dt
þ ðV qDÞ

a

Ia
¼ 0 with a ¼ x; y: ð37Þ
Momentum equation
oV mxij

ot
þ dx½FxðSxu; Sxmx; V mxÞ�ij þ dy ½FyðSy v; Symx; V mxÞ�ij ¼ �ðSxoxpÞ

x

ij þTxij; ð38Þ

dSxmxiþ1
2
j

dt
þ ðV mxDÞ

x

iþ1
2
j ¼ �Sxoxpiþ1

2
j
þ ðTxÞ

x

iþ1
2
j; ð39Þ

dSymxijþ1
2

dt
þ ðV mxDÞ

y

ijþ1
2
¼ �½ðSxoxpÞ

x
�
y

ijþ1
2
þ ðTxÞ

y

ijþ1
2
; ð40Þ

oV myij

ot
þ dx½FxðSxu; Sxmy ; V myÞ�ij þ dy ½FyðSy v; Symy ; V myÞ�ij ¼ �ðSyoypÞ

y

ij þTyij; ð41Þ

dSymyijþ1
2

dt
þ ðV myDÞ

y

ijþ1
2
¼ �Syoypijþ1

2
þ ðTyÞ

y

ijþ1
2
; ð42Þ

dSxmyiþ1
2
j

dt
þ ðV myDÞ

x

iþ1
2
j ¼ �½ðSyoypÞ

y
�
x

iþ1
2
j þ ðTyÞ

x

iþ1
2
j: ð43Þ
Energy equation
oV Eij

ot
þ dx½FxðSxu; SxE; V EÞ�ij þ dy ½FyðSy v; SyE; V EÞ�ij

¼ �½dxðSxupÞij þ dyðSy vpÞij� þ dxðSxuTxÞij þ dyðSy vTyÞij; ð44Þ
dSaEIa

dt
þ ðV EDÞ

a

Ia
¼ �½dxðSxupÞ þ dyðSy vpÞ�

a

Ia
þ ½dxðSxuTxÞ�

a

Ia
þ ½dyðSy vTyÞ�

a

Ia
with a ¼ x; y: ð45Þ
The gradient forces of the viscous stress are computed as
Taij ¼
X
b¼x;y

dbðSbsabÞij with a ¼ x; y: ð46Þ
The advections are sorted on the left-hand side of Eqs. (36)–(45) and solved by the CIP-CSL3 scheme.
The spatial discretizations in the above equations are constructed by using both the VIAs and the SIAs of
the physical variables.

As mentioned earlier, the averagings of operators are equivalent to the TEC formula that convert
the temporal changes between VIA and SIA for the corresponding physical variable. For example,
given the VIA of any physical variable being updated by the discretized governing equation due to
operator W(/) as



40 F. Xiao et al. / Journal of Computational Physics 213 (2006) 31–56
dWt
V/ij 	

dWV/ij

dt
¼ WðV/; Sx/; Sy/Þ; ð47Þ
the computation of SIA Sa/Ia expressed by
dSa/
W

Ia

dt
¼ WðV/; Sx/; Sy/Þ

a

Ia
; a ¼ x; y; ð48Þ
in (36)–(45) can be simply computed by the TEC formula as
Sx/
W

iþ1
2
j ¼ Sx/

iþ1
2
j
þ dWt ðS

x/
iþ1

2
j
ÞDt ¼ Sx/

iþ1
2
j
þ 1

2
ðdWt V/iþ1j þ dWt

V/ijÞDt; ð49Þ

Sy/
W

ijþ1
2
¼ Sy/

ijþ1
2
þ dWt ðS

y/
ijþ1

2
ÞDt ¼ Sy/

ijþ1
2
þ 1

2
ðdWt V/ijþ1 þ dWt

V/ijÞDt: ð50Þ
In the above expressions, /W denotes the renewed value due to the contribution of operatorW and dWt the

corresponding time increment. We further denote the computations of (49) and (50) by Sa/Ia !TEC Sa/
W

Ia
.

We should remark that the TEC formula like (49) and (50) is computationally stable only if the
scheme for updating the VIA in (47) is stable. This is a straightforward conclusion from the fact that
a bounded interpolation or averaging of the numerical errors from a stable scheme always results in
bounded errors.

Simple arithmetic averages as (49) and (50) are used in the numerical tests reported in this paper.

2.5. The solution procedure

The time integration procedure for each step which updates all physical variables from step n (t = tn) to
step n + 1 (t = tn + 1 = tn + Dt) is summarized as follows:

(i) Compute the advection phase by the CIP-CSL3 scheme and get the provisional values for the VIAs
(V/

}
) and the SIAs (S

a/
}
for a = x,y). At this stage, density (q) has reached its updated value at

(n + 1)th step, while momentum (mx,my) and energy E need to be further advanced due to the non-
advection phase.

(ii) Calculate the trajectory averages for all moments by
V/
�} ¼ 1

2
ðV/n þ V/

}Þ and Sa/
�}
¼ 1

2
ðSa/

n
þ Sa/

}
Þ for a ¼ x; y: ð51Þ

(iii) With the trajectory averages, compute the viscosity related part to update the VIAs as V mx
}}

,
V my

}}
and V E

}}
using the corresponding discretized operators in Eqs. (38), (41) and (44). Thus,

the time increments of the VIAs due to the viscosity, i.e., d}}
t ðV mxÞ, d}}

t ðV myÞ and d}}
t ðV EÞ, are

known and the SIAs are advanced by the TEC as

Samb
}
Ia
!TEC Samb

}}
Ia

with a; b ¼ x; y ð52Þ

and
SaE
}
Ia
!TEC SaE

}}
Ia

with a ¼ x; y: ð53Þ

(iv) Compute the intermediate VIA of pressure by

V p
}}
ij ¼ ½V E}}

ij � V q
nþ1

ij ðV u}}
ij Þ2=2�ðc� 1Þ; ð54Þ
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where V u
}} ¼ Vm

}}
=V q

nþ1
.
ij ij ij

(v) The pressure-based projection is conducted by the following inner loop with a time step ts = Dt/L,
where L is the number of the iteration of the inner loop.

ð0Þ }} ð0Þ }} ð0Þ }} ð0Þ }} ð0Þ }}
� Given V pij ¼ V pij , SamIa
¼ SamIa

, Vmij ¼ Vmij , SaEIa
¼ SaEIa

, V Eij ¼ V Eij ;

� do l = 1,L
Solve the following Poisson equation for V p

ðlÞ
ij

dxðSxoxp
ðlÞÞij þ dyðSyoyp

ðlÞÞij �
1

ðCðl�1Þ
ij DtsÞ2

V p
ðlÞ
ij

¼ 1

Dts

 
�V u

ðl�1Þ
ij dxðSxq

nþ1Þij � V v
ðl�1Þ
ij dyðSyq

nþ1Þij:�
1

ðCðl�1Þ
ij DtsÞ2

V p
ðl�1Þ
ij þ dxðSxmx

ðl�1ÞÞij þ dyðSymy
ðl�1ÞÞij

!
;

ð55Þ
Fig. 2. Bird�s eye views of the density (top) and pressure (bottom) of the circular explosion test at t = 0.25.
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where CðlÞ
ij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cV p

ðlÞ
ij =

V q
nþ1

ij

q
, and the gradient terms of pressure on the left-hand side of (55) is dis-

cretized by using the interpolation approximation (25).
As long as the Poisson equation for the VIA of pressure (V p

ðlÞ
) is solved, all moments are advanced

by

Sxmx
ðlÞ
iþ1

2
¼ Sxmx

ðl�1Þ
iþ1

2
� Sxoxp

ðlÞ
iþ1

2
Dts; ð56Þ

V mx
ðl�1Þ
ij !TEC V mx

ðlÞ
ij ; ð57Þ

Symx
ðl�1Þ
ijþ1

2
!TEC Symx

ðlÞ
ijþ1

2
; ð58Þ

Symy
ðlÞ
ijþ1

2
¼ Symy

ðl�1Þ
ijþ1

2
� Syoyp

ðlÞ
ijþ1

2
Dts; ð59Þ

V my
ðl�1Þ
ij !TEC V my

ðlÞ
ij ; ð60Þ

Sxmy
ðl�1Þ
iþ1

2
j
!TEC Sxmy

ðlÞ
iþ1

2
j
; ð61Þ
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in the first quadrant. The corresponding 3D views for density and pressure are shown in Fig. 2.
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V E
ðlÞ
ij ¼ V E

ðl�1Þ
ij � ½dxðSxup

ðlÞÞij þ dyðSy vp
ðlÞÞij�Dts; ð62Þ

SaE
ðl�1Þ
Ia

!TEC SaE
ðlÞ
Ia

with a ¼ x; y; ð63Þ

V p
ðlÞ
ij ¼ ½V EðlÞ

ij � V q
nþ1

ij ðV uðlÞij Þ
2
=2�ðc� 1Þ: ð64Þ
end do
(vi) Update momentum and energy as Sam
nþ1

Ia
¼ Sam

ðLÞ
Ia
, Vm

nþ1

ij ¼ Vm
ðLÞ
ij , SaE

nþ1

Ia
¼ SaE

ðLÞ
Ia
, V E

nþ1

ij ¼ V E
ðLÞ
ij

with a = x,y.
(vii) Go to next step.

We should note that the inner loop with a smaller time step interval is not necessary for computational
stability, but for a more accurate solution to the rarefaction wave when a relatively large CFL number is
used. Renewing pressure by (64) in the inner loop does not make noticeable difference in the numerical solu-
tion and is not used in low Mach flows.

In (57) and (60), the VIAs of momentum are computed by TEC formula after the SIAs of the com-
ponents normal to the surface elements in respective directions are corrected by pressure gradient force.
We should note that the coupling between pressure and velocity in the projection step is computed
through the VIA of the pressure and the SIA of the normal components of velocity. Considering that
the VIA and the SIA are staggeringly located, the pressure and the velocity are well linked. Since we
Fig. 4. Same as Fig. 2, but with the initial pressure in the center region being 10. The output is at t = 0.095.
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use both VIA and SIA as the model variables, the spatial discretization in VSIAM3 can be constructed
in a more natural way, where the poor pressure–velocity coupling in the collocated grid and the aver-
aging across different control volume in the conventional staggered grid are circumvented. Thus,
VSIAM3 gives a more robust and accurate spatial discretization for finite volume methods that use
pressure projection approach.
3. Numerical examples

Two types numerical tests were carried out to verify the proposed method. The first includes 2D explo-
sion and implosion of inviscid compressible flows to test the method as a solver for compressible flows that
contain shock waves. Another one is the lid driven cavity flow of viscous fluid [4] to show the capability of
the method in computing low Mach or incompressible flows.

3.1. 2D explosion tests

A symmetric two-dimensional explosion, which is reported in [18], on the computational domain
[�1,1] · [�1,1] is generated from the following initial condition:
Fig. 5.
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ðq;mx;my ; pÞ ¼
ð1; 0; 0; 1Þ for r 6 0:4;

ð0:125; 0; 0; 0:1Þ for r > 0:4;

�
ð65Þ
where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
is the radius.

The inviscid Euler conservation laws are solved on a 100 · 100 grid. The time stepping interval is 0.25D/C0

with D being the mesh spacing and C0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cp0c=q0c

p
, where p0c and q0c are the initial pressure and density in

the central region. The number of the inner iteration listed from (55) to (64) is two in the present
calculations.

The initial condition (65) produces an axis-symmetric configuration that contains circular out-going
shock wave and contact discontinuity and a rarefaction wave expanding inward. The bird�s eye views of
the density and the pressure at t = 0.25 are displayed in Fig. 2. The axis-symmetric solution is
accurately reproduced on a Cartesian grid. Shock wave, contact discontinuity and rarefaction fan are
well resolved.

In order to verify our 2D computations, we make use of the symmetry and reduce the axis-symmetric
Euler equations to the following 1D system in the radius direction with source terms that reflect the geo-
metric effects
oU

ot
þ oFðUÞ

or
¼ SðUÞ; ð66Þ
Fig. 6. Same as Fig. 2, but for the initial conditions given by (67). The output is at t = 0.00012.
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where
Fig. 7.
x = y
U ¼
q

m

E

0
B@

1
CA;

FðUÞ ¼
m

umþ p

Euþ pu

0
B@

1
CA
and
SðUÞ ¼ � 1

r

m

um

Euþ pu

0
B@

1
CA;
where u is the radial velocity and m = qu.
The reference solutions are obtained by solving (66) with the one-dimensional code of VSIAM3 [24] on a

fine mesh (20,000 cells). Indicated by the solid lines in Fig. 3, the reference solutions are visually identical to
those given in [18].
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Fig. 8. Bird�s eye views of the density evolution of the cylindrical implosion test. Displayed are the outputs at t = 0.0855 (top-left),
0.1475 (top-right), 0.1933 (bottom-left) and 0.2896 (bottom-right) in the first quadrant.

Fig. 9. Same as Fig. 8, but for pressure field.
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Plotted in Fig. 3 are the profiles of density, pressure, velocity and internal energy along the cross-
section of x = y against the reference solutions at t = 0.25. The numerical solutions of the proposed
method agree well with the reference solutions even with a coarse computational mesh. Both the shock
and the contact discontinuity are accurately computed with compact thickness. The rarefaction wave is
also well simulated.

We increased the central pressure to 10 and ran the test up to t = 0.095. The 3D views of density
and pressure are shown in Fig. 4. Impelled by the higher pressure, the shock wave is more than doubly
strengthened, and a thin compressed layer develops between the shock and the contact discontinuity.
Again, the cylindrical shock front is accurately simulated. The physical variables along x = y are plot-
ted in Fig. 5, where shock and contact discontinuity are well resolved. The circular front of the expan-
sion fan converges at the center. The numerical diffusion in velocity causes an overshot when the
expansion fan collides.
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An explosion in a low Mach flow is computed with the initial condition defined by
Fig. 11
are th
D0 SIA
E0 SIA
ðq;mx;my ; pÞ ¼
ð10�3; 0; 0; 14Þ for r 6 0:4;

ð10�3; 0; 0; 1�1Þ for r > 0:4:

(
ð67Þ
The maximum Mach number in this case is less than 0.01 because of low density. There are, however, very
large jumps in pressure, velocity and internal energy across the right moving shock wave. As shown in
Fig. 6, the presented method gives axis-symmetrical results where the high density region between the shock
and the contact discontinuity with a thickness less than 5 mesh cells is adequately reproduced. From Fig. 7,
it is observed that the shock is well resolved with a correct displacement even a small overshot in pressure
occurs right behind the shock wave. Similar to the previous test, the expansion region looks a little bit dif-
fused. We find that some improvements in the numerical accuracy for expansion wave can be achieved by
properly adjusting the sub-circle of the computations for acoustic waves. The structure of the whole system
has been sufficiently simulated even with a low resolution grid.
. The variation in the density (top) and the total energy (bottom) integrated over the whole computational domain. Displayed
e ratio of the computed density at different instants against the initial density. The shown quantities are defined as
x ¼

P
Sxqð0Þ, D0 SIA y ¼

P
Syqð0Þ, D0 VIA ¼

P
V qð0Þ, D SIA x ¼

P
SxqðtÞ, D SIA y ¼

P
SyqðtÞ, D VIA ¼

P
V qðtÞ and

x ¼
P

Sxqð0Þ, E0 SIA y ¼
P

Syqð0Þ, E0 VIA ¼
P

V qð0Þ, E SIA x ¼
P

SxqðtÞ, E SIA y ¼
P

SyqðtÞ, E VIA ¼
P

V qðtÞ.
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3.2. 2D implosion test

Cylindrical implosion has been numerically studied by using some 1D schemes for the reduced axis-
symmetrical Euler equations (66) in [17,14]. Equivalently, we conducted a fully two-dimensional computa-
tion with the following initial condition:
Fig. 12
numbe
result
ðq;mx;my ; pÞ ¼
ð1; 0; 0; 1Þ for r 6 0:4;

ð4; 0; 0; 4Þ for r > 0:25:

�
ð68Þ
Contrary to explosion, an inward shock and contact discontinuity converge toward the center. Accord-
ing to the previous studies [17,14], the converging circular shock collides, and a high pressure and high
density region is generated at the domain center. The reflected shock will then move outward and interacts
with the inward moving contact discontinuity. The interactions among various waves make the process
very complex, but the axis-symmetry should remain through the whole process. This problem provides a
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Table 1
Conditions for lid driven viscous cavity flows

Pressure Density Mach No.

Case 1 4 · 10�1 1 1.3
Case 2 4 1 0.42
Case 3 4 · 101 1 0.13
Case 4 4 · 102 1 0.042
challenging test bed to multi-dimensional codes for their accuracy and grid dependency. Any systematic
discrepancy will drive the configuration away from the circular symmetry, especially in the later stage after
converging shock collides and reflected from the origin.

We used a 200 · 200 grid on a [�0.7,0.7] · [�0.7,0.7] computational domain, which is still a low reso-
lution compared to those reported in 1D computations for the reduced axis-symmetric system. 3D views of
density and pressure at different instants are shown in Figs. 8 and 9. As expected, the converging shock
creates a sharp pulse of high density and high pressure at the center, which then causes an explosion moving
outward in an axis-symmetry. Our 2D simulation reproduced the cylindrical configuration. More detailed
examinations were carried out by plotting the cross-section profile of density and pressure along x = y in a
way similar to [14] in Fig. 10. Compared with the corresponding figures in [14] (i.e., Figs. 6(a) and (c) there-
in), our numerical results agree well with the 1D axis-symmetric simulation. All the shocks (including the
inward shock and the reflected shock), contact discontinuity and the rarefaction wave are adequately
resolved even with fewer computational grid. The second shock as mentioned in [14], however, cannot
be clearly identified in the present simulation probably because of the low spatial resolution of the compu-
tational grid.

We examined the conservation by summing up the density and the total energy over the whole compu-
tational domain. The variations of the density and the total energy in respect to their initial values of the
whole system are plotted against the time in Fig. 11. The VIAs of density and total energy are exactly con-
served, while the SIA quantities experience small change of an order less than 0.3%.



Fig. 14. Stream functions att= 25 for case
different Mach numbers. The
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3.3. Lid driven cavity flows

To evaluate the presented method in simulations of low Mach or nearly incompressible viscous flows, we
computed the widely used benchmark test of the lid driven cavity flow [4]. We still use the equation of state
of ideal gas. The initial density is unity for all the cases reported in this paper. The compressibility of the
flow is controlled by choosing different pressure. A nearly incompressible flow is approximated by setting
p = 108, thus the corresponding Mach number is 8.4 · 10�5. Simulations with a Reynolds number of 1000 is
conducted on 40 · 40 and 80 · 80 grids. The CFL number is 0.35 in terms of the driving velocity of the
upper lid (u = 1) and independent of the sound speed. The computation is stable no matter how large
the sound speed is. The horizontal velocity component u along the x = 0.5 axis and the v component along
the y = 0.5 axis are plotted in Fig. 12. It is observed that the result of 80 · 80 grid computation is in good
agreement with [4], and the simulation on a 40 · 40 grid also gives an adequate result. Fig. 13 shows the
stream function of the steady solution on a 80 · 80 grid. The typical flow patterns are accurately captured.
s 1(top-left), 2 (top-right), 3 (bottom-left) and 4 (bottom-right) which are characterized by
difference is summarized inTable 1 . The Reynolds number is 1000
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Fig. 15. The x component (top) and the y component (bottom) of the velocities of the cavity flows of different Mach numbers.
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It is revealed that the proposed method works well in the limit of incompressible flow and is able to give
accurate solutions to incompressible flows.

It is also interesting to see how the compressibility affects the development of the cavity flow. We carried
out a series experiments with the initial conditions given in Table 1. A grid of 40 · 40 and a CFL of 0.35 are
used for all cases. The stream lines at t = 25 for all cases are displayed in Fig. 14. The corresponding profiles
of u and v along the center lines are plotted in Fig. 15. The result of case 1, which never reaches a steady state,
is significantly different from the other three. The results of case 3 and case 4 are visually identical to the
nearly incompressible result in Fig. 12. In order to examine the evolutions of the cavity flows in all cases,
we show the minimum value of the stream function and the position of the primary vortex as a function
of time in Figs. 16 and 17. Case 1 is characterized by a significant compressibility which causes the oscillation
in the strength of the primary vortex. The position of the primary vortex center in case 1 moves along a spiral
like trail and is closer to the upper moving boundary compared to other cases. Case 2 has also oscillations in
the development of the vortex, while the vortex center move in a course more similar to the less compressible
cases. In the low Mach or less compressible cases (cases 3 and 4), the primary vortex is monotonically
strengthened and moves to its final position in a much stable way. It is found that cases 3 and 4 do not make
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Fig. 16. The strength development of the primary vortex in different Mach flows. See Table 1 for the condition for each case.
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noticeable difference. We may conclude that for steady incompressible viscous flows, a flow of a Mach
number less than 0.1 can be reasonably used to model a completely incompressible flow.
4. Conclusions

We have presented a multi-dimensional formulation for flows of any Mach number. A fractional step
solution procedure, where pressure is used as an auxiliary variable and updated by a semi-implicit manner,
is combined with the VSIAM3, a CIP/multi-moment finite volume method. With two kinds of integrated
moments, i.e., VIA and SIA, a multi-dimensional spatial discretization is constructed and well suited to the
pressure-based projection algorithm. The VIAs is exactly conserved in the computations. Different from the
conventional finite volume method, the VSIAM3 does not need the averaging of the velocity variables onto
the staggered grid point for advection computation in a staggered mesh, nor the extra treatment for the
poor pressure–velocity link in a collocated mesh. Hence, the solver appears to be more robust and accurate.
Geometrically faithful solution with less effects of the grid system can then be obtained.

The proposed method has been verified with typical multi-dimensional tests for compressible and less
compressible flows. Numerical results show that the present method is a conservative, robust and ade-
quately accurate solver for all Mach number flows.

With its multi-dimensional version given and validated in this paper, we can expect the present method
to be practical in many applications.
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Fig. 17. The displacement of the center position of the primary vortex as a function of time. The uppermost point indicates the start
point of the primary vortex.
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